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ABSTRACT 
An automated algorithm for detection of fiducial points from the electrocardiogram (ECG) and identification of its 

various morphologies is proposed in this work. The application area we consider is that of remote cardiovascular 

monitoring, where continuous sensing and processing takes place in computationally constrained devices, thus the 

complexity of the processing algorithms should remain at a minimum level. Under this context, a discrete wavelet 

transform (DWT) with the Haar function as mother wavelet, is used as  principal analysis method in this paper. 

From the modulus-maxima analysis on the DWT coefficients, an approximation of the ECG fiducial points is 

extracted. These initial findings are complimented with a refinement stage, based on the time-domain morphological 

properties of the ECG, which alleviates the decreased temporal resolution of the DWT. The resulting algorithm is a 

hybrid scheme of time- and frequency domain signal processing. 

 

Conventionally such ECG signals are acquired by ECG acquisition devices and those devices generate a printout of 

the lead outputs. A cardiologist analyzes the data for checking the abnormality or normalcy of the signal. But in 

recent times, automatic ECG processing has been of tremendous focus.  The main point of concern is how to 

develop a system for extracting the features from ECG signal so that these features can be used for Automatic 

Diseases Diagnosis. In this Article We  discuss a technique for extracting features from ECG signal and further 

analyze for ‘QRS’, ‘P-R’& ‘S-T’ intervals in appropriate time. 

 

KEYWORDS:Electrocardiogram (ECG), Fidicual point detection,  Haar wavelet, Maximum Modulus 

Approximation (MMA), signal processing,, Time domain Marphology  (TDM),. 

 

    INTRODUCTION
The analysis of the shape of ECG curves as well as the identification of relevant intervals between different waves is 

of major importance for the diagnosis of cardiac disorders. 

 

The ECG pattern contains a large amount of information about the functionality of the heart as for example its 

electrical conduction. Amplitudes of the different waves (P, QRS and T wave) as well as particular intervals in a 

cardiac cycle can indicate an underlying heart disease. The Feature Extraction stage extracts diagnostic information 

from the ECG signal. Typical ECG signal is as shown in fig.1.   

 

 
Figure 1.Typical ECG waveform 

 

AGING population and continuous prevalence of cardiovascular diseases (CVD)—the number one cause of death 
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(30% of the global total of all deaths) according to the World Health Organization (WHO)—leading to long-term 

conditions, have put current healthcare systems worldwide under serious strain in terms of the quality of care  

delivery and its associated cost.  

 

Cardiovascular disease monitoring is a big challenge in clinical practice. The cost of CVD care delivery can be 

reduced by effective disease management through continuous monitoring and information fusion of vital 

physiological signals in chronic CVD patients. Recently, advances in wireless sensor network (WSN) technology 

enabled the development of the next-generation remote CVD monitoring and management systems, it is possiable to 

monitor the patients vital sign data continuously in nomadic environment. The main approach is to use a number of 

battery-powered wireless sensors to capture the vital signs and transmit all data to a centralized service for further 

analysis and disease prognosis. Since from a computational perspective the traditional clinical feature extraction 

algorithms and information fusion techniques are very intensive tasks, these parts are typically executed in main-

frame type computational facilities. However, a significant energy expenditure component in such systems is the 

energy required by the radio front-end for supporting continuous data transmission, which may not allow a long-

term sustainable operation. For example, the ECG signal which is the fundamental component of a remote 

CVDmonitoring system, captured at 1 kHz sampling rate with 16-bit quantization.  

 

Considering a typical Bluetooth V2 transceiver with 40–55 mA current consumption in transmission mode and a 

battery capacity of 1200 mAh (the typical batteries used for WSN applications) and following the analysis presented 

in [2], we conclude that the continuous data transmission can be supported only for 24 hours. In addition , the A/D 

conversion, quantization, and signal preprocessing steps are also carried out at the sensor node. Including these 

factors, it can be argued that the operation of a continuous transmission based system, may not be realistically 

sustainable for more than 8–12 h. This falls well below the actual clinical notion of continuous monitoring in the 

sense of clinical usefulness. 

 

It is important to point out that from a clinical application perspective, the main purpose of the automated ECG 

analysis in such remote monitoring systems is to produce an “alarm signal” in case an abnormality is detected over a 

long period of time and by no means perform any detailed diagnosis of the patient’s clinical condition, as this is 

eventually done through more elaborate diagnostic means (e.g., imaging techniques) in clinical settings.  

 

ALGORITHMIC FORMULATION 
In this technique time–domain morphology based ECG feature extraction algorithm, the Fiducial points P, QRS, T 

are extracted and discrete wavelet transform (DWT) with ‘Haar’ wavelet, is applied on it to detect the presence of 

points. Detailed DWT coefficients were observed to hypothesize the postulates of detection of all types of 

morphologies used. Eight patients were randomly selected from the database taken from physionet. 

 

Feature extraction results from ECG signals taken from physionet were tested against manual annotations and used 

to compare our approach against the state-of-the art ECG delineators. The newly inaugurated Research Resource for 

Complex Physiologic Signals, which was created under the auspices of the National Center for Research Resources 

of the National Institutes of Health, is intended to stimulate current research and new investigations in the study of 

cardiovascular and other complex biomedical signals. The resource has 3 interdependent components. Physio Bank 

is a large and growing archive of well-characterized digital recordings of physiological signals and related data for 

use by the biomedical research community. We have taken the input database from the same mentioned site. 

 

The DWT can also be used to construct useful descriptors of a waveform. Since the DWT is a bilateral transform, all 

of the information in the original waveform must be contained in the sub band signals. These sub band signals, or 

some aspect of the sub band signals such as their energy over a given time period, could provide a succinct 

description of some important aspect of the original signal.  

 

WT is advantageous in signal processing for signal analysis but with highest computational cost. Here we used haar 

wavelet to decompose the signal, as it is simple with less arithmetic operations. It gives approximate coefficient and 

detailed coefficients. Due to use of haar wavelet power consumption also reduced with lowest computational 

complexity. Also it reduces noise and isoelectric line wandering in ECG signal. 

 

A. Selecting a wavelet function 

B. Haar Wavelet.(Initial estimation of QRS complex) 
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C. Maximum Modulus Approximation & Time domain marphalology 

D. Fiducial point detection. 

 

A.Selecting a wavelet function  

Transform can be thought of as a remapping of a signal that provides more information than the original. The 

Fourier transform fits this definition quite well because the frequency information it provides often leads to new 

insights about the original signal. However, the inability of the Fourier transform to describe both time and 

frequency characteristics of the waveform led to the wavelet transform that can be used as yet another way to 

describe the properties of a waveform that changes over time, but in this case the waveform is divided not into 

sections of time, but segments of scale. 

 

In wavelet analysis, a variety of different probing functions may be used, but the family always consists of enlarged 

or compressed versions of the basic function, as well as translations. There are two types of wavelet transforms 1) 

Continuous wavelet transform (CWT) and 2) Discrete wavelet transform (DWT) The CWT has one serious problem: 

it is highly redundant.  The CWT provides an oversampling of the original waveform: many more coefficients are 

generated than are actually needed to uniquely specify the signal. This redundancy is usually not a problem in 

analysis applications such as described above, but will be costly if the application calls for recovery of the original 

signal. For recovery, all of the coefficients will be required and the computational effort could be excessive. In 

applications that require bilateral transformations, we would prefer a transform that produces the minimum number 

of coefficients required to recover accurately the original signal. The discrete wavelet transform (DWT) achieves 

this parsimony by restricting the variation in translation and scale, usually to powers of 2. When the scale is changed 

in powers of 2, the discrete wavelet transform is sometimes termed the dyadic wavelet transform which, 

unfortunately, carries the same abbreviation (DWT).  

 

B.Haar Wavelet  

Because of its time-scale analysis nature, it is inherently   able to separate noise and artifacts, like iso-electric line 

wandering with the help of WT, at its different resolution levels as already been shown in [19]. However, the mother 

wavelet used for this purpose is a computationally demanding quadratic-spline Wavelet and as mentioned previously 

has an impact on the energy consumption. We have selected the Haar wavelet—the simplest wavelet function to 

reduce computational complexity and in turn energy consumption. Even the Haar function has its own limitations; 

we hypothesized that it still may be sufficient for the present purpose. The Haar wavelet function and its 

corresponding scaling function are depicted in Fig. 2.To ascertain the effectiveness of the Haar DWT in dealing with 

noise and    iso-electric line wandering, few ECG signals sampled at 1 kHz were investigated from the PTB database 

(PTBDB) [6]. Representative examples of signals that demonstrate iso-electric line wandering and signals that 

contain a significant amount of noise are illustrated alongside the five decomposition scales of Haar DWT in Fig.3. 

It is obvious that significant noise components exist in the first two resolution levels. 

 

 
Figure 2: scaling function and Haar wavelet function. 

 

Therefore, applying MMA on these scales could lead to less accurate results. From our observations, we concluded 

that by employing the MMA on the 23 scale detailed DWT coefficients (cD_l3), an initial estimation of the QRS 

fiducial points, within the PQRST complex, are possible. Where in the 23 scale, noise components are suppressed to 

such a degree allowing for a noise-free representation of the ECG signal from the 23 scale onward. Therefore, for 

identifying the ECG waves, it is sufficient only to consider the 23 (for QRS) and 25 (for P/T waves) resolution 

scales. This implicitly means substantial reduction in the computational complexity. Nevertheless, operating 

exclusively on the 23 scale introduces the disadvantage of diminished temporal resolution due to down sampling. 

This is expected to add inaccuracies in the estimation of  the QRS initially assumes the presence of all the 

constituent ECG waves (P, QRS, and T). Our method is a combination of the MMA applied on the DWT 

decomposition levels and the time-domain morphological analysis of the ECG signal. 
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Figure 4: sample ECG signal 

 

 
Figure 5: Wandering baseline artifact 

 

The first-level details (d1) show the discontinuity most clearly, because the rupture contains the high-frequency part. 

The discontinuity is localized very precisely around time = 500. The presence of noise, which is after all a fair ly 

common situation in signal processing, makes identification of discontinuities more complicated. If the first levels of 

the decomposition can be used to eliminate a large part of the noise, the rupture is sometimes visible at deeper levels 

in the decomposition. We have zoomed in on the middle part of the signal to show more clearly what happens 

around time = 500. The details are high only in the middle of the signal and are negligible elsewhere. This suggests 

the presence of high-frequency information -- a sudden change or discontinuity around time = 500. 

 

The first-level details (d1) show the discontinuity most clearly, because the rupture contains the high-frequency part. 

The discontinuity is localized very precisely around time = 500. The presence of noise, which is after all a fairly 

common situation in signal processing, makes identification of discontinuities more complicated. If the first levels of 

the decomposition can be used to eliminate a large part of the noise, the rupture is sometimes visible at deeper levels 

in the decomposition. We have zoomed in on the middle part of the signal to show more clearly what happens 

around time = 500. The details are high only in the middle of the signal and are negligible elsewhere. This suggests 

the presence of high-frequency information -- a sudden change or discontinuity around time = 500. 

 

To detect a singularity, the selected wavelet must be sufficiently regular, which implies a longer filter impulse 

response. Regularity can be an important criterion in selecting a wavelet.. With the help of haar wavelet, the 

discontinuity would not have been detected. The resulting algorithm is referred as the hybrid feature extraction 

algorithm (HFEA), since we employ both frequency and time domain analysis. To begin with, DWT decomposition 

takes place on the PQRST-complex. The analysis is performed at five dyadic space scales (21 ,…. 25) using the 23 

and 25 scale for the extraction of QRS and P/T waves parameters. With the help of high and low pass filters we can 

implement multiscale DWT decomposition as a cascade filter bank structure as shown in fig.5. The output of the 

high-pass filters (H1 (z)) provides the detailed WT coefficients (cD_lx) at the 2x scale, while the approximate WT 

coefficients (cA_lx) are obtained from the output of the low-pass filters (H0 (z)). From the Haar transfer functions, it 

can be seen that the output of the high-pass filter is proportional to the local averages of the derivative of the input, 

which in turn is a filtered version of the original signal. From this, it is established that potential extrema in the 

original signal x[n] are represented as zero-crossing points in the cD_lx (where x is odd), while instances with 

maximum slope (deflection points) in the signal are transformed into extrema (minima or maxima) points on the 

cD_lx. 
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Figure 6: Cascade filter-bank implementation of DWT. 

 

C. Maximum Modulus Approximation & Time domain marphalology 

MMA is employed for the approximation of the zero-crossing points after computing wavelet coefficients, the focus 

turns on the 23 scale detailed coefficients, The boundaries of the constituent ECG waves (P, QRS, and T) are 

expected based on the MMA principle, due to their morphology (deflection points),to be localized by a modulus-

maxima pair (MMP) on the DWT coefficients of the respective scale. Given the positive or negative deflection of 

the ECG wave, compared to the isoelectric line, for a positive deflection the pair of extrema that indicates the wave’s 

temporal position, can be either a minimum followed by a maximum, or the reverse for a negative deflection. Thus, 

the MMA method also allows the characterization of every wave as inverted or not, which is exploited in our 

algorithm. Through MMA, we initially obtain the temporal position of the deflection which demonstrates higher 

separation from the isoelectric line. This is accomplished by calculating the temporal positions (t1, t2) of the global 

extrema pair in the cD_l3 coefficients. This deflection may correspond to either the R_peak (for a positive 

deflection) or to Q or S_peak (in case of a negative deflection). After that, MMA is applied in the vicinity of the 

global extrema pair, in order to obtain a first approximation of the temporal position of the QRS boundaries. The 

initial estimation of the QRS onset (QRSon) is obtained as the preceding extrema (min or max) from the local MMP 

in a search window defined as [t1−4, t1]. Similarly, the offset of the QRS, (QRSon) is estimated from the succeeding 

extrema of the MMP found in [t2, t2+4]. 

 

As pointed out earlier, the temporal resolution on the 23 scale is diminished (by a factor of 8) compared to the 

original timescale. This coupled with fact that we operate on a single resolution scale, may inherently lead to less 

accurate localization of the main deflection (Either R_peak or Q, S_peak) and of the QRS boundaries, an example 

where the MMA produces less accurate results. For mitigating that effect we employ a TDM-based refinement. The 

TDM refinement process amends the initial MMA approximation, leading to a more accurate estimation of the QRS 

fiducial points. The R_peak time instance is amended first. From the MMA on the cD_l3, we obtain the temporal 

boundaries (t1, t2 ) within which lies the deflection that exhibits higher separation from the isoelectric line. If this 

deflection is  characterized as positive, it is interpreted as an R-wave and thus by projecting (t1, t2) into the original 

timescale of x[n], the amended R_peak time point is calculated as the maximum of the PQRST-complex (max(x[n])) 

within this time window (n ∈ [t1 × 23, t2 × 23 ]). If the deflection detected in the MMA is characterized as negative 

(t1 is a maximum and t2 is a minimum), then it corresponds to either the Q or the S_peak. Since, the R_peak is 

always a positive deflection; it will be always localized by an MMP with the first point being a minimum and the 

second a maximum in the cD_l3. 

 

D.Fiducial point detection 

After the TDM refinement process QRS boundaries are finalized, At the cD_l3 the same modulus-maxima analysis 

was applied at the CD_13 is applied at the 25 resolution scale detailed coefficients CD_15 only at the portion that 

precedes and succeeds the detected QRS complex in order to P and T-wave feature extraction in order to identify the 
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P and T wave boundaries and the corresponding peaks. P and T waves are known to identify either convexity or 

concavity against the isoelectric line and the MMP that localizes the wave also allows us to characterize it as convex 

or concave in a similar way that we characterize a deflection as positive or negative. The complete HFEA algorithm 

is given in the form of pseudo code in Fig.7. The implementation of the algorithm for validation took place in 

MATLAB. 

 

RESULTS AND DISCUSSION 
We present here an analytical calculation of the number of arithmetic operations required for the HFEA to run to 

completion to quantify the complexity of the HFEA algorithm. There are three major components in the HFEA: 

1. DWT coefficients generation 

2. MMA 

3. TDM refinement 

 

For analysis, subtractions are considered equivalent to additions, while one comparison operation is considered to 

have half the complexity of an addition. For extraction of extremas (min/max) within a specific interval 

Comparisons are used. According to the Haar DWT high- and low-pass filter transfer functions, we consider that for 

a single cD_lx or cA_lx coefficient, 1 addition, and 1 multiplication is required to derive the number of arithmetic 

operations required. For the DWT coefficients generation, as an example, in order to calculate the cD_l1 or cA_l1 

coefficients individually, N/2 additions and N/2 multiplications are required. Subsequently, the calculation of cD_l2 

or cA_l2 requires N/4 additions and N/4 multiplications. In the HFEA, we only utilize the cD_l3, cA_l3 and cD_l5 

coefficients, which according to Mallat’s algorithm, means that from the other resolution scales only cA_l1, cA_l2 

and cA_l4 must be calculated. Since cD_l5 are computed directly from cA_l4 the cA_l5 coefficients do not need to 

be calculated. In total, the computational complexity of calculating the coefficients that are employed in the HFEA is 

N/2 + N/4 + 2N/8 + N/16 + N/32 additions and N/2 + N/4 + 2N/8 + N/16 + N/32 multiplications. The MMA step 

involves the extraction of the max and min values of cD_l3, which is of N/8 length. This process requires (N/8 − 1) 

comparisons. The additional MMA calculations in the vicinity of the global MMA pair require 2 additions for the 

expansion of t1, t2 , 4 comparisons in the [t1 − 4, t1 ] interval and another 4 comparisons in the [t2, t2 + 4] interval 

,thus in total 6 additions. At this point the TDM refinement step takes place. The t1, t2 values, obtained from MMA, 

define an interval of length T in the cD_l3 subspace. For the R_peak extraction, the first possibility where t1 < t2, 

(positive major deflection) involves the projection of the T interval boundaries to the original timescale with 2 

multiplications, where an interval of length 8 T is now defined and for the extraction of the R_peak (8T − 1) 

comparisons are required to localize the maximum point and designate it as the R_peak . 

 

The second scenario where t2 < t1 (negative major deflection, requires 2 additions for the expansion of t1, t2 values 

by 15 and 10, respectively, ((15 − 1) + (10 − 1) = 23) comparisons for deriving the ta and tb values, 4 multiplications 

for projecting the t1, t2, ta, tb into the original timescale and a total of (8 * 15 − 1) + (8*10 − 1) + 1 = 199 

comparisons for the localization and comparison of the R_peak1 and R_peak2 values. The final R_peak is mapped 

back to 23 scale subspace, with 1multiplication, where it is used for the QRS boundaries refinement beginning with 

setting the adaptive thresholds, for which (N + 2) comparisons, 1 addition and 1 multiplication are required. 

 

 

The refinement will take place on a sample of M + 23 cA_l3 coefficients. For the backward difference operation 

(gradient calculation) in that sample, (M + 22) additions are required. The operation of comparing the gradient to the 

thresholds requires, M + 20 comparisons for identifying both QRSon and QRSoff After projecting the QRS 

boundaries to the original timescale with 2 multiplications, the final stage of the TDM which pertains to the 

extraction of the Q and S_peak position which requires, 8(M+ 23)−(1±2 ) comparisons, where _1, _2 are the 

differences in samples in the original timescale between the beginning of the 8(M + 23) interval and the detected 

QRSon and QRSoff and the end of the 8(M + 23) interval respectively. From the above, the TDM stage collectively 

requires 11M + N + 203-1/2(1±2) comparisons, M + 24 additions and 6 multiplications, for the first if-statement of 

the TDM and by following the same process 9M + N + 426 − 1/2(1±2) comparisons, M+26 additions and 8 

multiplications for the else statement. To sum up the calculation of the TDM stage, we consider that M <N/8,T <M/4 

thus T <N/32.Moreover, from our experiments _1, _2 < 30.With these in mind and by expressing comparisons as 

half additions the total computational complexity of the TDM stage is 1.31N + 95 additions, 6 multiplications, or 

1.18N + 208 additions, eight multiplications depending on which if-statement is satisfied.  

 

 

http://www.ijesrt.com/


[Punam*, 4.(12): December, 2015]  ISSN: 2277-9655 

 (I2OR), Publication Impact Factor: 3.785 

   

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology 

[71] 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: .HFEA Algorithm for ECG feature extraction 

 

 

 

1.Initialise 

Consider a PQRST complex x[n] of length l 

2. HAAR DWT 

   Calculate DWT Approximate cA l3 and Detailed Coefficients 

   cD l3 and Detailed Coefficients. 

3. QRS Initial Estimation 

    Display approximate and detail coefficients. 

Get minimum and maximum values from level 3 detail   coefficients. 

4.  Save A3 to temporary variable. 

Save D3 to temporary variable. 

5.Time-Domain Refinement (TDM) 

Refinement for Q position using approximate coefficients 

Set 1 to S position equal to minimum value. 

Get T position from remaining temporary signal. 

6.P,T Wave Estimation MMA 

Save to temporary variable. 

Set Q position to last A3 equal to minimum value. 

Get P position from remaining temporary signal. 

REPEAT P Block with n ∈  [QRSoff cD l5 end] for the Twave 

7.Plot signal and show PQRST points. 

8.Calculate QRS PR ST intervals at level 3. 

9.Calculate QRS PR ST intervals in time domain 

10.Convert QRS PR ST intervals in appropriate seconds. 
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The final stage of the HFEA for the extraction of the P and T wave fiducial points initially requires the MMA 

analysis on the cD_l5 coefficients. For the P-wave, the MMA can theoretically run on a maximum of N/64 

coefficients and may require up to (N/64 − 1) comparisons to extract the max and min points. Localizing, through 

MMA, the min and max point of cD_l5 defines an interval of length P which after being projected (with 2 

multiplications) in the original timescale has a length of 8P. In this interval the P peak time instance is localized, as 

the min or max value of the interval and for this (8P − 1) comparisons are used. 

 

As P <N/80 from experiment, the equivalent number of additions for the P-wave analysis is 0.0391N − 1 additions 

and 2 multiplications. For the T-wave analysis, the same number of operations is considered to be required, thus the 

total number for this stage is 0.0875N − 2 additions and 4 multiplications. From the above investigation, the total 

number of operations required for the HFEA algorithm is 2.553N + 102 additions and 1.093N + 10 mult iplications, 

or 2.423N + 214 additions and 1.093N + 12 multiplications based on which if-statement is executed on the R peak 

extraction. This final number represents an upper bound on the required arithmetic operations. 

 

It is obvious that the upper bound depends on the number of input samples N. By considering the number of 

multiplications to be approximately the same for both cases, we focus on the number of additions and conclude that 

for N ≤ 861 the upper bound is 2.423N + 214, while forN >861 the upper bound is 2.553N + 102. In reality, the 

number of actual arithmetic operations is going to be lower since M _ N/8, T _ N/32 and the MMA on cD_l5 will be 

executed on a smaller than N/64 number of coefficients. 

 

Now it is compared with WT ECG delineator. This work creates the basis of WT-based ECG delineation the 

quadratic-spline wavelet is used to avoid decimations. We observe from the transfer function provided, that for 

computing a single pair of WT coefficients 4 additions and 4 multiplications is required. Since, the number of 

generated WT coefficients in each level is the same as the number of input samples, for an input of N samples 4N 

additions and 4N multiplications are required to generate the WT coefficients in one level. 17N additions and 17N 

multiplications are needed for the DWT coefficients generation for the first five scales of WT coefficients. 

Approximate coefficients of the 25 are not computed. It is obvious that the amount of required arithmetic operations 

only for the calculation of the WT coefficients in [16], without any further processing, is considerably higher that the 

upper bound of the computational complexity of the HFEA. This is indicative of the possibility for significant power 

reduction, compared to the WT-delineator of [16], of the HFEA when implemented. 

 
Figure8: accurately detected PQRST peak points 

 
Fig.9: computational complexity in HFEA 
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CONCLUSION 
A novel algorithm (HFEA), based on the combination of WT analysis, MMA and time-domain morphology 

principles, for extracting the ECG fiducial points is proposed in this paper. The use of DWT with the Haar function 

as the basis allows for a significant reduction in the computational complexity compared to other WT-based 

approaches. Fig.8 shows an output indicating Fiducial points of an ECG with red colour with asterisk. In order to 

assess the performance of the proposed algorithm andquantify its accuracy, ECG signals from various databases 

from physionet are used. These signals are manually annotated with the help of expert chest therapist.  HFEA 

demonstrated the best performance of the three algorithms and there are no CSE tolerance limits.  

 

For these parameters it is observed that the CSE limit is not satisfied, and the error in terms of the actual ECG 

samples, except from T_peak. HFEA performance is very close to the state-of-the-art ECG delineators. By taking 

into account that mobile CVD monitoring systems are predominantly used for assessing the patient’s overall 

condition, rather than making a complete diagnosis, the proposed scheme is comparatively better for the ECG 

analysis in such systems. 
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